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Abstract. We argue that the assumption of the universal atomic scale is not justified by 
observations. The latter indicate just the contrary, namely that the scale is a degree of 
freedom. We attempt to state a concise general definition of the principle ofrelativity. The 
incorporation of the dilatational degree of freedom into the principle of relativity requires 
that physical events take place in the six-dimensional space v6, the subspace of which is the 
Minkowski space M4. The norms and angles of 6-vectors in v6 are assumed to be 
conserved, whilst their projections into M4 are in general not conserved under the 
transformations of the group IS0(4,2). The speed of light is invariant in v6 but its 
projection into M4 is invariant only under certain transformations, for instance under those 
of the PoincarC group ISO(3,l)  c IS0(4,2). The theory provides a description of the muon 
to electron mass ratio. The ‘primordial’ transverse momentum of partons is proposed to 
originate from the dilatational momentum. 

1. Introduction 

Special and general relativity in space-time encompasses a wide area of observed 
phenomena, ranging from astrophysics to the physics of subnuclear particles. In spite of 
this success there are several problems. Relativity in space-time, apart from the 
problem of its quantisation, is far from being able to represent in a theoretically 
satisfactory way all presently observed phenomena. In particular, it does not unify 
different ‘fundamental’ interactions. There are also several unresolved problems in 
astrophysics, such as the controversial anomalous red shifts of galaxies (Arp 1970, Field 
et al 1973, and references therein), and the very large ‘velocity’ dispersion in clusters of 
galaxies (Clube 1978). In the field of subnuclear particles there are the problems with 
the so-called large transverse momentum phenomena (Jacob and Landshoff 1978). 
Moreover, the origin of the e /k  mass ratio is not known. 

In the situation when new experimental data are being accumulated, not easily fitted 
into the existing relativity and quantum electrodynamics or quantum chromodynamics, 
we have to become more open in considering new ideas concerning the very fundamen- 
tals of the theories. In the present paper I propose a generalisation of relativity which 
incorporates the hypothetical dilatational degree of freedom associated with the 
assumed variability of the scale of an object. Let the length of a 4-vector connecting two 
different events El ,  E2 within an object be a measure of an object’s scale. If an object 
serves as a clock let the events El, E2 be two successive ‘ticks’. If an object serves as a 
rod let the events El ,  E2 be emissions of light signals from the ends of the rod. I assume 
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that in a given reference frame in the four-dimensional space-time an object’s scale is 
variable along its world line (for an extended object: world tube). 

Before explaining what exactly I mean by the ‘variable scale’ of an object let me say 
some words about the concept of scale. 

I wish to demonstrate that the concept of scale has not been fully examined so far. 
More open and more rigorous considerations of this concept will result in a theory 
which will provide new interpretational possibilities for some observed-but not well 
understood-phenomena. 

In the excellent book by Dicke (1964) it is written: ‘Imagine, if you will, that you are 
told by a space traveller that a hydrogen atom of Sirius has the same diameter as one on 
the earth. A few moments’ thought will convince you that the statement is either a 
definition or else meaningless. It is evident that two rods side by side, stationary with 
respect to each other, can be intercompared and equality established in the sense of an 
approximate congruence between them. However, this cannot be done for perpen- 
dicular rods, for rods moving relatively, or for rods with either a space- or time-like 
separation. Their intercomparison for purposes of establishing equality cannot be 
made until rules of correspondence are established’. 

Let Oo be an object-called the reference object-defining a reference length d(Oo). 
The quantity d(O0) is defined to be a 4-distance between two chosen events El and E2 
related to the object Oo. If Oo serves as a clock, then let El and E2 be two successive 
‘ticks’ separated bya  time-like 4-distance. If Oo serves as a measuring rod, then let El 
and E2 be chosen to be separated by a space-like 4-distance. In the case when Oo is a 
hydrogen atom let the 4-distance d(Oo) be chosen to represent in a rest frame: 

(i) when being time-like, the time interval between two successive minima of the 
emitted light wave; 

(ii) when being space-like, the diameter of Oo. 
Let 0 be an arbitrary object, its length d ( 0 )  being defined in the same way as d(Oo). 

The scale K of 0 relative to Oo is defined by 

K = d(Oo)/d(O). (1.1) 
In equation (1.1) the scale K~ of the reference object Oo has been taken to be K~ = 1 by 
definition, 

The simplest way of measuring the scale of 0 is to put both 0 and Oo side by side 
and to compare their lengths. To compare their lengths means either to compare their 
diameters or their characteristic time intervals. 

However, in many cases we wish to compare the length of a distant object 0 with the 
length of a reference object 00. In such a case, in order to obtain the diameter d ( 0 )  of 
0, we must determine both the angular diameter of 0 and the distance 00,. The 
distance TOo is defined in terms of the time that it takes light to pass from Oo to 0 and 
back to Oo (Anderson 1967). 

In his last scientific writing Einstein (1955) realised that in principle there should 
exist objects 01, O2 identical in all respects except for having different scales K ~ ,  K ~ .  

When put side by side such objects would have different lengths d(O1), d (02 ) ,  their ratio 
being 

When O1 and O2 are observed from the distances ll and 12,  respectively, such that 
11/12 = K ~ / K ~ ,  then O1 and 0 2  would have identical angular structures (and therefore 



Dilatational degree of freedom in pat  VS 1369 

equal angular diameters). Einstein rejected this possibility, since it seemed to him to be 
contrary to the observed facts. That is to say, according to him and to almost everybody, 
the observed fact is that all hydrogen atoms in the universe have equal scales which 
implies equal diameters and equal frequencies of equivalent natural emission lines. My 
opinion is that this is not an observed fact. The possibility of similar objects with different 
scales is not discredited by observations, as I am going to show. As given above, in order 
to know the scale of an object we must know its length. In a rest frame, the length may 
be either diameter or characteristic time interval. 

For a given observer the diameter d ( 0 )  of a distant object 0 is uncertain if the 
distance between observer and 0 is uncertain. Therefore, the scale K = d ( O o ) / d ( 0 )  is 
also uncertain to the same extent. It is a well-known fact in astrophysics that the 
distances of distant objects are not known very precisely. A consequence is then that 
scales of these objects (stars, galaxies, etc) are also uncertain. Therefore, the possibility 
that different identical objects-for instance, hydrogen atoms-in the universe might have 
different scales is not excluded. If such hydrogen atoms with different scales would be 
translated in space-time so as finally to be placed side by side, their scales would still be 
different. In fact, by definition, translation in space-time is such a transformation that 
changes an object’s position but leaies its scale unchanged (see P a v E  1977 and 
references therein). On the other hand, dilatation changes an object’s scale but leaves 
its position unchanged. So an object has both translational and dilatational degrees of 
freedom. If an object is free, i.e. has no forces acting on it, its position and/or scale varies 
uniformly or is constant along its world line, as observed from a given reference frame 
defined by world lines of reference objects. We will say that an object is moving 
translationally and/or dilatationally. Thus the concept of inertia is also extended from 
translational degrees of freedom to the dilatational degree of freedom. This will be more 
extensively explained in the subsequent sections. 

An appropriate measure of time interval associated with a hydrogen atom is the 
frequency v of a typical emission line. Let this hydrogen atom belong to a macroscopic 
object 0. Let vo be the frequency of the corresponding equivalent emission line from a 
reference hydrogen atom belonging to a macroscopic object Oo. Let us require for a 
moment that 0 is translationally at rest with respect to Oo. The scale K of the hydrogen 
atom in 0 is defined by 

K = Y/Yo (1.3) 

where the scale K~ of the reference hydrogen atom is K ~ =  1. I must stress that in 
equation (1.3) both ;and vo refer to equivalent emission lines, e.g. K, lines. 

If 0 moves translationally with a non-relativistic velocity U << c towards Oo, the 
observed frequency is 

V = KVo(1 -k V / C ) .  (1.4) 

The frequency shift is 

Av/vo = K V / C  + K - 1. (1.5) 

Only in the special case K = 1 do we obtain the familiar red shift or blue shift relation 
hv /uO = v/c .  Equation (1.5) teaches us that for the measured shift Av/vo the scale K is 
uncertain to the same extent that the velocity v is uncertain. If 0 is a distant star or a 
galaxy, its velocity v is uncertain. So we do not know the scale of a hydrogen atom in a 
star or a galaxy. This uncertainty in scale is reduced but not eliminated by additional 
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information such as the knowledge of the angular diameter of 0 and its approximate 
distance from the Earth. So it is possible that different identical objects in the universe 
might have different scales. 

Let me now say some words about identical objects. A solar system and a galaxy 
have different scales. However, these objects are not identical, since a solar system 
cannot be magnified to become congruent with a galaxy. In other words, a galaxy and a 
solar system cannot be seen from different distances so as to appear as objects with 
identical observed angular structures (and angular diameters). In the present paper I 
assume and explore the possibility (PavSiE 1975, 1977) of the existence of identical 
objects having different scales (Caldirola et a1 1978a, b), for instance hydrogen atoms 
having different scales and therefore different frequencies of equivalent emission and 
absorption lines. The statement: ‘all hydrogen atoms in the universe have equal scales’ 
is an assumption not confirmed by observations. If so, we may as well assume the 
contrary, namely that different hydrogen atoms have in general different scales, and 
then find out the consequences of a theory based on such an assumption. 

Let us postulate the following. The scale of ‘fundamental’ physical quantities such 
as the Bohr radius, charge, mass of electron, etc, is not absolute but relative to a given 
reference frame. 

A reference frame-composed, for instance, of reference hydrogen atoms-may 
change so that we obtain different values for those quantities. In a given reference frame 
it is possible to find atoms, nuclei, etc, having scales that differ from the scales of 
presently known atoms, nuclei, etc. By postulating this, questions like ‘why is the mass 
of an electron 0.51 MeV and not 5 MeV, the charge 1.6 x C?’ 
are meaningless. Only questions like ‘why is the ratio of the mass of the proton to the 
mass of the electron in the bound system such as a hydrogen atom 1937?’ have meaning. 
When an atom is broken into a free electron and a free proton, their mass ratio remains 
the same as it was within their bound system except for the bound energy corrections. 
Protons and electrons ejected from various atoms have, in principle, various mass 
ratios, provided that the scales of atoms are different. However, atoms formingor being 
ejected from a certain system, such as a crystal or a sample of air, in which they 
experience mutual interactions, have equal scales within the present accuracy of 
measurements. Possible differences in their scales could be detected even in a ter- 
restrial laboratory as an additional spread added to the natural width, the Doppler 
spread, etc, of a spectral line of a sample material (cf equation (1.4)). 

According to the position assumed in the present paper, scale is a degree of freedom, 
called the dilatational degree of freedom, possessed by an object besides the translational 
and rotational degrees of freedom. In order to include scale in a theoretical represen- 
tation of the world I propose that, instead of the Minkowski space M4, we have to use 
the six-dimensional non-compact space v,. A physical event is represented by six 
independent coordinates (Kastrup 1962, Barut and Haugen 1972) q a  = (v”, 77’, 7,) 
(a  = 0 ,1 ,2 ,3 ,5 ,6 ;  p = 0 ,1 ,2 ,3 )  with 7”’ = KX”, v 5  = K ,  v6 = A .  When projected into 
the Minkowski subspace M4 c VC, the coordinates v”, K,  A are related, respectively, to 
the changes of position, changes of a 4-vector length, ds = (dx” dxW)’”, and the 
changes of the angles cos cp = dxf dx2p/(dslds2). In the presence of the algebraic 
constraint 7‘7, = vWvW - KA = 0 (i.e. A = KX”~,) ,  cos cp is an invariant quantity and we 
deal with the conformal relativity in the restricted sense (Cunningham 1909, Bateman 
1910, Kastrup 1962, Barut and Haugen 1972). In the present paper I do not impose 
any constraint on the coordinates qa, and therefore cos cp is not invariant under all 
linear orthonormal transformations which preserve the quadratic form d v a  dv, = 

C and not 7 x 
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dq”  dqS -dK dh and the angle between the 6-vectors dql*, dqZa. These trans- 
formations belong to the inhomogeneous orthonormal group IS0(4,2)  of rotations and 
translations in the space V6. 

2. Definition of the principle of relativity 

We will take an observation as a primitive element of a theory. An observation o is an 
event or set of events which happen in a measuring instrument R. An instrument R can 
register many-in practice infinitely many-various observations which reflect the 
physical situations the surrounding world happens to find itself in. An observation o 
registered by R changes either when the surrounding world changes or when R 
changes. Let {o} be the set of all possible observations o E {o} which can be registered by 
R, and let { R }  be the set of all possible instruments R E { R }  which are available, at least 
in principle, to an observer. 

Let d be a group of the transformations A ~d such that each A changes an 
instrument R into another instrument R ’ :  

R = A R ’  R ’ = A - ’ R .  (2.1) 

The group d defines a subset {S} c { R }  of instruments S, S’, etc, such that for each 
S E {S} and for each S‘ E {S} we have 

S = A S ’  S‘ = A-’S. (2.2) 

When passing from S to S’ an observation o registered by S transforms to an 
observation 0’ registered by S‘: 

0‘ = Ao. (2.3) 

The set { R }  is the union of all possible subsets {S}. Let {S} be called the equivalence class 
of instruments. 

With the aid of the group d it is also possible to define a subset { o , } ~  {o} of 
observations oe, 06 etc, such that for each oe E (0,) and for each 0 6  E (0,) we have 

06 =Ao,  oe = A-’o:. (2.4) 

Let a subset (0,) be called the equivalence class of observations. The set {o} of all 
possible observations is the union of all various equivalence classes {eel}, {oe,}, . . . : 

(0) = U { o e i }  (2.5) 
i 

( i  runs over all various equivalence classes). 

(Recami and Mignani 1974). 
Let a relation among various observations ol, 02,. . . , be called a physical law 

Let us introduce the principle of relativity defined by the following requirements. 
(a) For an arbitrary SE{S} all various equivalence classes of observations are 

(b) Each equivalence class {S} of instruments is isomorphic to each equivalence 

(c) A physical law is covariant, i.e. invariant in form under any A E d. 

isomorphic to each other. 

class (0,) of observations. 
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If the requirements (a), (b), (c) of the principle of relativity are satisfied we will say 
that S is a reference frame and that d is the covariance group of a theory about the 
observations 0. 

Let the totality of all frame-independent concepts that we can derive from obser- 
vation be called the phenomenon 0. An observation is related to a corresponding 
phenomenon 0: 

0 = O(S).  (2.6) 

A phenomenon is invariant but an observation depends on the reference frame S. For 
special relativity in the Minkowski space M4 a phenomenon is, for instance, the world 
line (or world tube) of an object, whilst an observation is its velocity. 

The goal of an experiment is to enlarge {o}, whilst the task of a theory is to find out a 
corresponding principle of relativity, based on the requirements (a), (b), (c). If the 
principle of relativity cannot be determined, the theory artificially completes the set (0) 
of the existing observations so as to be able to satisfy the principle of relativity, and thus 
predicts new possible observations. On the contrary, new experimental discoveries can 
enlarge the set of existing observations, so that they are no longer encompassed in the 
old principle of relativity which is based on the old covariance group. In such a case, the 
covariance group must be enlarged so as to encompass the new observations also. 

In the present paper I start from the point of view that the existing observations, 
especially those in astrophysics, no longer permit the PoincarC group ISO(3, 1) as a 
covariance group. Instead of ISO(3,l) we have to take at least the group IS0(4,2)  as a 
covariance group. 

3. Mathematical preliminaries: definition of the group IS0(4,2) 

Let v6 be a six-dimensional non-compact space with a metric tensor yab of signature 
(+ - - - - +). Let aa be the contravariant and aa the covariant components of a 
position 6-vector in the space v6. Let the inhomogeneous group of transformations LI 
that preserve the quadratic form 

d a 2  = dq" dqa = Yab d a "  d a b  (a ,  b = 0, 1 ,2 ,3 ,5 ,6 )  (3.1) 

be denoted by IS0(4,2). Its homogeneous subgroup is just the wel1-known conformal 
group S0(4,2) .  This is the reason for the choice of signature (+ - - - - +). 

For physical reasons it is more convenient to use a basis in which the metric tensor is 
non-diagonal (Kastrup 1962, Barut and Haugen 1972): 

where S,, = diag (+ - - -). The contravariant components of a position 6-vector are 
then 

whilst the covariant components va = & b V b  are 
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In a basis in which Yob is given by equation (3 .2)  the quadratic form (3 .1)  is 

d u 2 E d q M  dq, -dK dA. ( 3 . l a )  

Instead of the coordinates q“ we can use as well the coordinates x a  = ( x ” ,  a, A): 

(3 .5a)  

(3 .56)  

(3.52) 

In the coordinates x“  the quadratic form ( 3 . l a )  becomes 

du2  = C2(dxL” dx, + d a  dA) = a-’ ds”’ 

d d 2  = du2  i.e. dT2 = a-2 d t 2  (3 .7)  

(3 .6)  

where ds”’ = dx, dx, + d a  dA. Under the action of a transformation LI E I S 0 ( 4 , 2 )  

where in general a’ # a. 
The theory is simpler in terms of the coordinates qa, since the quadratic form d u 2  is 

invariant under I S 0 ( 4 , 2 ) .  On the other hand, results of observations are more 
obvious in terms of the coordinates x u ,  since the first four components x W  by definition 
represent the usual space-time coordinates. Further, from (3 .5)  and (3 .7)  it follows that 
the coordinate a determines the scale of ds” relative to a fixed du. In general ds”’ 
changes when passing from a reference frame S in which the scale is a to another frame 
S’ in which the scale is a ’ f a ( c f  equation (3 .7)) .  The coordinate A manifests itself 
through a deviation of 4-angle cosines: 

(3 .8)  

where dsl = (dx’; dx1,)1’2 = (a2  dqla dqla  -daldA1)1’2 and analogously for the 
index 2. 

We have two possibilities: 
(i) A # 0; then cos cp is invariant only with respect to those L I€  I S 0 ( 4 , 2 )  that 

(ii) A = 0; then it is (cf equation ( 3 . 5 ) )  
preserve d a  and/or dA; 

qaQa = qwq, - KA = 0 (3 .9)  
which is invariant under the homogeneous transformations L E S 0 ( 4 , 2 ) ;  in this case for 
A = 0, therefore, cos cp also is invariant under L E  S 0 ( 4 , 2 ) ,  as follows from equation 
(3.8).  

The imposition of the condition 

A = O@qaq, = O @ A  = KX”X, (3.10) 

implies the transition from relativity in the space v 6  to relativity in the space V5 c v6. 
The space V5 is the five-dimensional hypercone, defined by equation (3.10),  embedded 
in v6. V5 is usually called conformal space (Barut and Haugen 1972) and the relativity 
in this space conformal relativity (Ingraham 1978). Even if the latter is called ‘relativity’ 
it does not satisfy the principle of relativity as defined in 0 2, since there is no 
equivalence set of observations (0,) isomorphic to the equivalence set of reference 
frames {S}. Moreover, in the case of a constraint on qu which results in A # 0 we no 
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longer have a six-dimensional flat space but a five-dimensional curved space with 
constant curvature. This curvature does not result from a distribution of matter but, on 
the contrary, is given a priori. This is contradictory to the principle of relativity, and also 
to the requirement that the space (in this case the five-dimensional space V5) should be 
asymptotically flat in the absence of matter. 

The principle of relativity can be satisfied only if we abandon the condition A = 0 
(equation (3.10)) and i f  we postulate the existence of identical objects not only with 
different 4-positions x w  but also with different scales CY and different A. In other words, we 
require that there exist equivalent observations 0, associated with each other by the 
transformations LI E I S 0 ( 4 , 2 ) .  Such equivalent observations would be, for instance, 
those of hydrogen atoms with different scales, as already mentioned in 9 1. A more 
complete treatment of equivalent observations related to the group I S 0 ( 4 , 2 )  will be 
performed in 9 5 .  

Being armed with this preliminary formalism we can now turn to physics and apply 
the principle of relativity to the case of the covariance group I S 0 ( 4 , 2 ) .  

4. Definition of the measuring instrument for x' 

This is just the six-dimensional analogue of the light cone in the four-dimensional 
Minkowski space M4. If we start, as we do, from requiring that the space v6 instead of 
M4 should be used in physics, then it is also natural to require that in general a light 
signal travels along a path which satisfies equation (4 .1) .  For such a generalised light 
signal we could invent some other name, but I think it is superfluous.. 

Instead of the coordinates 77" we can use the coordinates x", related to the 
coordinates 77" by equation (3 .5 ) .  In terms of the coordinates X "  the above equation 
(4 .1)  reads 

(x"  - X ; ) ( X ,  -xi") = ( x w  - x i w ) ( x w  - x i w ) + ( a  - - a i ) ( A - A i )  = 0. ( 4 . 1 ~ )  

The index i refers to an initial event. 
Equation ( 4 . l a )  implies that the speed of light is unity and invariant only in terms of 

the six coordinates x " .  It is unity (in the units c = 1) and invariant in terms of xw 
(p = 0 , 1 , 2 , 3 )  only in the special cases of CY = ai and/or A = Ai. 

The coordinates X "  of an event P can be determined by means of a measuring 
instrument S which consists of a clock M and five emitter-absorbers A,  B, C, D, E 
which are all at rest relative to each other. Let us ascribe to these absorber-emitters for 
the indices a = 1, 2 , 3 , 5 , 6  the coordinates x:, x g ,  x &  x &  x g .  This is arbitrary and 
serves as a chosen standard. Let x4 in equation ( 4 . 1 ~ )  stand for x:, x g ,  etc. Then ( 4 . 1 ~ )  
represents five equations for five unknowns x r  ( r  = 1 , 2 , 3 ) ,  a = x 5 ,  A=x6.  Let the clock 
M send a light signal at the time tM from M to P. At P let the signal be reflected towards 
M, A, B, C, D, E whose world lines it crosses at the times th, fa, tB, tc, to, fE, respec- 
tively. Then the time coordinate t = x o  of the event P is t = i(t;ti + tk). The other five 
coordinates x r , x 5 , x 6  can be determined from the five equations ( 4 . 1 ~ )  for i =  
A ,  B,  C, D, E. 
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In order to measure a and A we must require the emitter absorbers A, B, C, D, E to 
have, in general, not only different x r  positions ( r  = 1 ,2 ,3 )  but also different a and A 
positions (CYA # CYB # QC # (YD # LYE, A A  # AB # AC # AC # AD # AE). In practice it 
would be enough to require 

a M  = ffA = ffB = ac 

A M =  A A =  A B =  A c  

(YD # CYE # a~ 

AD # AE # AM. 

(4.2) 

If relativity in V6 is indeed correct then there must exist objects satisfying equations 
(4.2) to give five independent equations ( 4 . 1 ~ )  for i =A,  B, C, D, E from which five 
independent components x a  (for a = 1 , 2 , 3 , 5 , 6 )  can be evaluated ( x o  = tis determined 
from t = $(th + tM) ) .  The objects M, A, B, C, D, E constitute a measuring instruments 
which represents a reference frame for the coordinates x Q  (or 7 ‘ ) .  

The existence of a clock M and objects A,  B, C, D, E which satisfy five independent 
equations (4. l a )  for i = A,  B, C, D, E would be a verification of the theory. At the same 
time it would give us the definition of the measuring instrument for the coordinates. 
This is in agreement with the requirement that a theory itself must provide the means of 
measuring the physical quantities it uses. 

Identical objects with different a have different sizes; identical objects with different 
A have different observed xcL structures (different forms). With A increasing or 
decreasing from the value A = 0 an object’s xcL structure is systematically shifted from 
its ‘normal structure’ defined for A = 0. 

Though the forms and lengths of objects in terms of the coordinates X’I ( p  = 
0, 1 ,2 ,3 )  in general are not conserved, they are conserved in terms of the coordinates 
qQ. The forms remain similar in terms of the coordinates x Q  ( a  = 0, 1 , 2 , 3 , 5 , 6 ) ,  apart 
from a change of scale a (cf equation (3.7)). 

So we have succeeded in conforming to Einstein’s objection to Weyl’s theory 
(1918), namely ‘if lengths are not conserved why then are forms still conserved?’. The 
present theory is more general than Weyl’s in the sense that it admits not only 
non-conservation of lengths but also of forms. This implies that, in the presence of an 
interaction, the lengths and forms of objects would, in general, depend on their 
histories. But such a dependence holds only for unbound objects and not for bound 
objects. 

A spatial position x r  ( r  = 1,2 ,3) ,  scale a and A of an unbound object are not 
localised. On the contrary, a spatial position, scale and A of a bound object are 
localised. For instance, in the case of a crystal, atoms have fixed discrete spatial 
positions, apart from the thermal oscillations around their fixed equilibrium. They have 
apparently also fixed scales and therefore fixed discrete spectra of emission and 
absorption lines. In the case of a gas, interactions among atoms (or better, among 
molecules) are much weaker than in a crystal, and therefore their spatial positions and 
translational velocities are spread. By analogy we also expect that scales and dilata- 
tional speeds of atoms should be spread around an average scale and an average 
dilatational speed determined by the container of the gas. The bigger the container, the 
bigger is the spread of positions and scales (and A) of atoms within a gas. A 
consequence of a spread of scales and dilatational speeds is a spread of the emission and 
absorption spectra, as already discussed in the Introduction (see equation (1.4)). 

To sum up, an interaction has a double role: it can either cause a separation of 
positions x r ,  scales and A of interacting objects, or cause a formation of bound systems. 
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In the latter case, not only positions x r  of objects within a bound system but also scales 
and A are expected to be localised. So there is also an answer, at  this stage only at the 
heuristic level, to Einstein’s main objection to Weyl’s theory: ‘we do not observe scale 
(or length) changes of objects’. The answer is that these observations refer to bound 
objects, in which case, according to the above heuristic considerations, we do not expect 
significant scale changes at all. On the contrary, unbound objects, in general, are 
rigorously predicted to change their scales relative to each other. Several astrophysical 
observations indicate that this is indeed true (see 90 1 and 6). 

5. The principle of relativity based on the covariance group IS0(4,2) 

Let us extend the principle of relativity from the PoincarC group ISO(3, 1) to the group 
IS0(4,2).  The latter group, being the larger one, encompasses a wider set of possible 
phenomena than does the group ISO(3,l) .  Since ISO(3, l )  c IS0(4,2),  all obser- 
vations of ISO(3, 1) also belong to observations of IS0(4,2).  

We will apply the requirements (a), (b), (c) of the principle of relativity to our case of 
the group IS0(4,2).  

First, I will further clarify some concepts of 9 2. 
Phenomenon is a frame-independent concept. A phenomenon 0 is, for instance, an 

event or an ensemble of events, such as a world line, world tube, etc. Let a phenomenon 
with a recognisable identity (see equation (5.21)) be called an object. For instance, a 
hydrogen atom is an object. 

Observation is a frame-dependent concept. An observation is, for instance, a 
reference event in an instrument, i.e. reference frame S,  designed to measure coor- 
dinates of an arbitrary measured event 0. In a given reference frame S,  a reference 
event o defines the coordinates of a measured event 0 (see Q 4). Instead of a single 
measured event there can be an ensemble of measured events which all together, if they 
have a recognisable identity, represent an object. To an ensemble of measured events 
there corresponds an ensemble of reference events, or, in other words, to a 
phenomenon 0 there corresponds an observation o = O(S)  performed with an 
instrument S.  In particular, 0 can be an object. 

For a fixed object 0, a change of reference frame: 

results in a change of observation: 

o + o l = A o  0 = O(S)  o1 = O(S’) 

where A is a transformation of the covariance group. 
In a fixed reference frame S, a change of object: 

O+O’=AO (5.3) 

results in a change of observation: 

o + o ’=  Ao 0 = O(S)  0’ = O’(S). (5.4) 

Let the observations o and 0’ which are associated with each other by a trans- 
formation A of the covariance group d be called equivalent observations, regardless of 
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whether o and 0’ are due to different frames S and S’,  respectively, or to different 
objects 0 and 0’. Equivalent observations belong to an equivalence class of obser- 
vations (0 2). 

Let the instruments S and S’ which can be mapped one into the other by A E d be 
called equivalent instruments or reference frames. They belong to an equivalence class 
of instruments (§ 2). 

Let the objects 0 and 0’ which, in a given reference frame S,  can be mapped one into 
the other by a transformation A of the covariance group d be called identical objects. 

From equations (5.1)-(5.4) and from the relation AO(A-’S) = 0 ( S )  it follows that 

U ( S )  = 0 ’ ( S ’ ) .  ( 5 . 5 )  

Equation ( 5 . 5 )  means that the observation o of the object 0 in the frame S is identical 
to the observation 0’’ of the object 0’ in the frame S‘ .  This means that 0 looks in$ 
exactly as 0’ does in S’.  

Now, let the covariance group d be the inhomogeneous group IS0(4,2), and let the 
transformation A be L I E  IS0(4,2). Let S be a reference frame in which the metric 
tensor Y a b  is given by equation (3.2). Such a reference frame will be called inertial. Any 
other frame S’ = LF’S is then also inertial. 

The covariance group IS0(4,2) is inhomogeneous. It is the direct product of the 
group of translations in the space v 6 :  

TIa = q a  + p a  (5.6) 

and of the homogeneous group S0(4 ,2)  of the rotations L E S0(4,2): 

(5.7) b = L a b q  . 
Here we take a particular example of observation, namely coordinates, and a 

particular example of phenomenon, namely event. Instead of coordinates we can take 
any other observation that can be represented by components of a 6-vector. The 
equivalence class consists of the 6-vectors that differ among themselves up to a 
transformation IS0(4,2). 

Now, let us consider some particular examples of the homogeneous transformations 
L. 

(i) The rotations of ql, q2, v 3  which leave the axes qo, q 5 ,  q6 unchanged; they are 
equivalent to the usual rotations of xl, x 2 ,  x 3 .  

(ii) The rotations of q”, q6 (p,  Y = 0, 1 ,2 ,3 )  which leave q 5  = K unchanged: 

q’@ = q” + U ” K  

K ’ = K  (5 .8 )  

A ’ = A  + 2 a v q ” + a ” a , ~ .  

In terms of the coordinates x a  = ( x ” ,  a, A) (see equations (3.5)) this reads: 

These are just the translations of the coordinates x”  
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(iii) The rotations of q5,  q6 which leave q/* unchanged: 

q'/* = q/* 

K '  = p - l K  

A ' = p A .  

In terms of the coordinates x' this reads: 

(5.10) 

(5.11) 

A'=pA.  

These are just the dilatations of the coordinates x ' .  
(iv) The rotations that leave qo, q6 unchanged but change qr ,  q 5  (r  = 1 , 2 , 3 ) :  

$0 = 

(5.12) 

A ' = A .  

(v) A rotation L which is a generalisation of the usualLorentz transformations can be 
represented by the matrix: 

(5.13) 

1 where u a  =dqa /dqo=  (U/*, u5,  u6) ,  ua (uy us, &) = (U/*, -3% -$us) is a velocity with 
respect to a frame S of a world line which is at rest in the frame S'.  Let the component 
u 5 = d ~ / d q o  be called the dilatational speed. Further notation in equation (5.13) is 
y = ( u , u ' ) - ' ~ ~ ,  A = y2(1 + y ) - ' ,  where U,U' = 1 + u p r  + = 1 - u r d  - U v . The 
matrix L, given by equation (5.13), has the same form when expressed both in the 
coordinates q' in which the metric tensor Sab is non-diagonal (equation (3.2)) and in 
the coordinates f a  in which the metric tensor is diagonal. 

In the case U' = (1, vr,  0,O) equation (5.13) represents the usual Lorentz matrix. 
In the case U' = (1, 0, U', u6) equation (5.13), when inserted into equation (5.7), 

6 5 6  

yields: 
0 1 6  1 5  5 ~ l o = y ( ~  --gV K - T U  A )  [ K = T  , A = q 6 ]  

q r  = 

K ' =  - u 5 y q 0 + ( l + $ A u 5 u 6 ) ~  +$Au5v5A [ A  = y2(  1 + y ) - ' ]  
5 6 - 1 1 2  A ' =  - - U ~ Y ~ ~ + $ A U ~ U ~ K  + ( 1  +$Au5u6)A [ y = ( l - u  U ) 1. 

(5.14) 

This is a transformation of the coordinates qa from a frame S, in which u5 = dK/dqO of a 
world line is zero, to a frame S' in which us # 0 and v6 # 0. 
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In the case va  = (1, 0, us,  0) equation (5.14) reduces to 

77’o= 77 0 -c0A v5/2) 
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(5.15) 

A ‘ = A .  

If we apply first the transformation (5.12) and then the transformation (5.15), or vice 
versa, we obtain the following rotation in v 6 :  

q f w  = 77”-c”A 

K ’ = K - 2 C Y ~ Y + C Y C y ~  (5.16) 

A ’ = A .  

In the presence of the constraint 77ava = 0 (i.e. A = KX”X,,) ,  equation (5.16) is equivalent 
to the special conformal transformations in M4: 

X I ”  = ( x ”  - c w X Y X Y ) / a ( x )  u ( x ) =  1-2cJ’+ccycYx,xoL. (5.17) 

As the constraint vaqa = 0 is not compatible with the principle of relativity we 
abolish such a constraint and work with six independent coordinates qa, giving a 
physical meaning also to the sixth coordinate v6 E A. 

So far, we have used a single event. Equations (5.6) and (5.7) represent either a 
mapping of an event E into another event E’: 

LI 
E+E’ (5.18) 

in a given reference frame, or a change of coordinates of an event E when passing from a 
reference frame S into another frame S’. In both cases the coordinates of E change: 

770 4: $a.  

Instead of a single event we can map an ensemble of events Ei (i runs over the 
ensemble) into another ensemble El : 

LI 
Ei -+ E ;  (i = 1,2,  * . . , N), (5.19) 

where N is the number of events in the ensemble. The coordinates of an ensemble of 
events transform according to (5.6) and (5.7) but instead of T~ we use 74: 

LI 
774 + 774 (i = 1 , 2 , .  . . , N ) .  (5.20) 

A n  ensemble of events Ei with coordinates 774 can represent an object 0: 

0-774 (i = 1,2, .  . . , N ) .  

N is then the number of events which sample an object. 
An object has been defined as a phenomenon with a recognisable identity. 
In terms of the coordinates r)“, let the identity 4 of an object be defined as the totality 

(5.21) 

of 6-distances vij between events Ei and Ej:  

$ac*qi = (774 - q ; ) ( V i a  - 7 j a )  (i, j = 1,2,  . . . , N ) .  
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We can define the 6-momentum by 

IT, =moo dqQ/du (5.22) 

where moo is the mass (Barut and Haugen 1972) invariant under transformations of the 
group IS0(4,2). Let the component r5 be called dilatational momentum. A world line 
of a point particle is characterised by its 6-momentum 7rQ. The latter transforms as a 
6-vector, according to equations (5.6) and (5.7), where q Q  is replaced by 7rQ. 

In a given reference frame, an ensemble of world lines is characterised by a 
corresponding ensemble of momenta 7rp (i = 1 ,2 , .  . . , M )  which, under a trans- 
formation LI IS0(4,2), transforms according to (5.6) and (5.7): 

(i = 1,2,  . . * , M ) .  Q L1 r r ,  --+IT;, 

M is the number of world lines in an ensemble. 
An ensemble of world lines W, with momenta 7r: can also represent an object 0: 

O-Tp ( i  = 1 , 2 , .  . . , M ) .  (5.23) 

In terms of momenta T', let the identity 4 of an object be defined as the totality of 
6-distances 7rIi in momentum space: 

(5.24) 

Instead of the coordinates q a  we can use the coordinates x Q  which, according to our 
definition (see 0 2), are directly observed in experiments. Let an and a, be, respec- 
tively, contravariant and covariant components of a 6-vector, expressed in the coor- 
dinates qQ. Corresponding components A" and A, in the coordinates x a  are then 
(Fulton 1962): 

2 4*T, = (4 - 7r;)(?rI, - Ti,) ( i , j = l , 2  ,..., M ) .  

A , = K  --n +2 A,  = K-"- (5.25) 

where n is the degree of homogeneity (see Barut and Haugen 1972). Namely, all 
functions in coordinates q a  are assumed to be homogeneous functions satisfying 

a ( m )  =P"a(T) .  (5.26) 

Equation (5.25) implies 

A"A, = K-2n+2aaa,. (5.27) 

The degree of homogeneity of the 6-momentum 7rQ = moo dq"/da is n = 0. Let p"  
be the 6-momentum in the coordinates x a .  It is related to 7rQ according to 

p @  = K ( T w  --XwT5) 

p 5  = -T5 (5.28) 

p K 2( T6 - 2X,T " + X "X,7r5) 

where we have taken into account (5.25), (3.5) and n =O.  Similarly, for covariant 
components (also in agreement with (5.25), (3.5) and n = 0): 

(5.29) 
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From (5 .22 )  and (5 .28) :  

(5 .30 )  

where x a  
Equations (5 .30 )  and (5 .22)  imply 

(x,, a, A), X a  = (x,, $A, $a), ds”2 Edx”  dx, + d a  dA (see equation (3 .6 ) ) .  

(5 .31 )  2 2  p a p a  = K moo = K ~ ? T ~ T ~  

which is in agreement with equation (5.27). 

assumes the form 
If we use the coordinates x a ,  then the identity 4, as defined by equation (5 .21 ) ,  

( 5 . 2 1 ~ )  9 e 77 = K i K l  [ ( X  f - X ,” )(XI, - XI, )  + (ai - a,)(Ai - A,)l- 
Similarly, the identity 9, as defined by equation (5 .24) ,  can be written in the form: 

9-r: = ( a l p f  -a,p,”>(a,p, ,  -a ,p , , )+(p?  - p F ) ( a f p f  -a:pF) ( 5 . 2 4 ~ )  

where equations (5 .28 )  and (5.29) have been used, with a, = K ; ’ .  

An object 0 can be represented either by events E,  or world lines W,. A 
transformation LI maps an object 0 into another object 0’ which is represented by 
events E :  or world lines W : ,  and has the same identity 4 as the object 0. 

is invariant under any 
transformation of the group I S 0 ( 4 , 2 ) :  

2 

The identity 4 in terms of six coordinates ria or momenta 

(5 .32)  

In terms of the usual four coordinates x P  or momenta p W  we can define the 
Minkowski identity I :  

( i ,  j = 1 , 2 ,  . . . , N )  

( i , j =  1 , 2 , .  . . , M )  

(5 .33 )  

(5 .34)  

2 I - x i ,  = (xt” -X,”)(X,, -x,,) 

1-p; = (Pf - -P; ) (P l ,  -P ,J  
which, in general, is not invariant under L I c  I S 0 ( 4 , 2 ) .  

Analogously, in terms of three coordinates xl, x2, x 3  we can define the three- 
dimensional identity of objects which is an invariant concept only with respect to 
three-dimensional rotations. Special relativity in M, has replaced the three-dimen- 
sional identity by the four-dimensional Minkowski identity I. Special relativity in v6 
replaces the Minkowski identity I by the six-dimensional identity 9. 

From equations (5 .32 ) ,  ( 5 . 2 1 ~ )  and ( 5 . 2 4 ~ )  it follows that both xi, a i d p , , ,  defined by 
equations (5.33) and (5.34), are invariant under those transformations of ISO(4,Z) that 
leave a, A, p’ ,  p 6  invariant. Such transformations are the usual translation and Lorentz 
transformations of xcI and p , ,  belonging to the PoincarC group ISO(3, 1 )  c I S 0 ( 4 , 2 ) .  
They conserve the Minkowski identity of an object. However, if the covariance group is 
I S 0 ( 4 , 2 )  and not ISO(3, l ) ,  then the Minkowski identity I is not an invariant. It must 
be replaced by the six-dimensional identity 9, as defined by equations (5 .21 )  and (5 .24 )  
or ( 5 . 2 1 ~ )  and (5 .24a) ,  which is invariant under any transformation of the group 
I S 0 ( 4 , 2 ) .  

Roughly speaking, transformations which go beyond the Poincar6 group would, in 
general, change the objects’ sizes and forms, as observed in terms of four coordinates 
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x". Their Minkowski identities I will be, in general, transformed. But their six- 
dimensional identities 9 would remain invariant, as well as their invariant masses moo. 
A prediction of the theory is that such objects should exist. A justification for such a 
prediction has been made in § 1 (see also 0 6 ) .  

Let us consider, for instance, a dilatation, defined by equations (5.10).  From 
equations (5.32),  ( 5 . 2 1 ~ )  and ( 5 . 2 4 ~ )  it follows that under a dilatation the quantities xii 
and pii transform according to 

p; j  =p-lpjj.  

(5.35) 
(5.36) 

If our object is a hydrogen atom, then x i j  represent the intrinsic distribution of the 
electron cloud, whilst pij represent its intrinsic configuration of energy and momentum 
states (instead of linear momenta p4 we could use angular momenta in the definition of 
the identity 9). A dilatation maps a hydrogen atom H with vjj,  rij and invariant mass 
moo into another hydrogen atom H' with vii = vii, rii = rii and mho = moo. The atom H 
has xii, pjj,  but the transformed atom H' has x i j  = pxij, p i /  = p-'pij. 

There is no contradiction with quantum mechanics, since the latter must also be 
extended to the space v 6  (Barut and Haugen 1972, 1973, PavliE 1977). For instance, 
the Dirac equation in v6 can be written (Barut and Haugen 1973, PavK 1977) in the 
form 

(5.37) 

where 'ya are the Dirac matrices in V6, e is the electric charge, cpn is the electromagnetic 
field potential, and = -id/av". Let the eigenvalues of 7 j a  be r4. The latter 
eigenvalues enter the expressions (5.21) and (5.24) for the identity 4. The Planck 
constant A = 1 is taken to be invariant under any transformation of I S 0 ( 4 , 2 ) .  Itfixes the 
scale of length in terms of the coordinates v", i.e. it fixes d r  (see equations (3.6) and (3.7)), 
vij and mi, but it does not f ix  the scale of x a, ds, xii and pi/. Both atoms H and H' have 
energy and angular momentum states which are solutions of the same Dirac equation in 

A position in V6 of an atom or any other particle, obeying quantum mechanics in v 6 ,  
is not restricted to one particular value of scale 77' = K .  However, the analogy with the 
usual quantum mechanics suggests that, when particles interact among themselves so as 
to form bound systems, their scales, due to quantum effects in v6, assume certain discrete 
values ai. This is a reason why the scales of particles appear to be fixed. Consider a 
crystal. Its constituent atoms, due to quantum effects, have fixed discrete positions x l  
( r  = 1 , 2 , 3 ,  i runs over all atoms in the crystal) with respect to the crystal. But a crystal as 
a whole can be continuously translated. Each individual atom, if being free-and not 
bound within a crystal-can assume an arbitrary position x'. Bear in mind that in the 
present theory the analogy between discrete positions x i  and discrete scales ai, and the 
analogy between free positions x r  and free scales a, is justified by the fact that both x r  
and (Y are treated on the same footing, being merely components of the 6-vector x"  (or 

It has been realised by Barut (1977) that different states of the same hydrogen atom 
can be mapped, by a change of scale, into each other. This is in a sense analogous to the 
fact that different discrete positions of atoms within a crystal can be mapped into each 
other by appropriate translations. 

However, this is not the whole story: a whole crystal can be continuously translated 
without changing its Minkowski identity I (equations (5.33) and (5.34)),  i.e. without 

[ya (7j" - ecp") - moo14 = 0 ( A  = c = 1 )  

v 6  

7"). 
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changing relative positions of its constituent atoms. The atoms themselves retain their 
individual Minkowski identities. 

Analogously, a whole crystal can be continuously dilated without changing its 
6-dimensional identity 9. Its Minkowski identity is then changed by a continuous factor 
p (see equations (5.35) and (5.36)). I have already shown in 0 1 that present obser- 
vations do not exclude such a possibility, but rather indicate the contrary (see 0 6). 

One example was dilatation. Similarly we can investigate what happens to an object 
if transformed by any other transformation of the group I S 0 ( 4 , 2 ) .  In any case, its 
six-dimensional identity 9 is conserved (see equation (5.32)), but its Minkowski 
identity I (equations (5.33) and (5.34)) is not always conserved. 

Let us also consider a transformation (5.15) which implies 

a 1-2cot 
a’ l - C & h ’ ‘  
-= 

From equations (5.38), (5.32) and ( 5 . 2 1 ~ )  it follows that 

(5.38) 

provided that we take ti = ti = t, ai = ai a and Ai = A j  E A. A consequence of this last 
assumption and equation (5.15) is that a:  = ai 

Equations (5.38) and (5.39) imply that if x i j  are constant at various times ti = ti = t, 
then xi j  are not constant, but change. 

We say that in the frame S an object 0 with variable x i j  is moving dilatationally with 
a dilatational speed v 5  = 2c0 (see equation (5.15)). In a frame S’, related to S by the 
transformation (5.15), the same object 0 with constant x i j  is said to be dilatationally at 
rest: Y ” = o .  

In  the frame S objects 0 and 0‘ are predicted to exist, which are mapped into each 
other by the transformation (5.15). The latter object is dilatationally at rest, whilst the 
former one is moving dilatationally. 

This implies, heretically as it may appear, that any object can start ‘shrinking or 
expanding before our eyes’, provided that it is given (for instance, in an interaction or a 
collision, see equation (5.42)) an appropriate dilatational momentum 7r5, Present 
observations do not exclude the possibility that galaxies are moving dilatationally with 
respect to each other. Later we shall see that if an electron is supposed to be dilationally 
at rest, whilst a muon is moving dilatationally, then we have a description of their 
observed mass ratio ( Q  6). 

Let us now explain the requirements (a), (b), (c) of the principle of relativity for the 
example of the covariance group I S 0 ( 4 , 2 ) .  

(a) Equivalence classes of observations are isomorphic to each other. If two different 
phenomena 0 and 0’ are identical, i.e. if the frames S and S’ exist such that equation 
(5.5) is satisfied, then their observations o and of  belong to the same equivalence class. 
On the other hand, if 0 and 0’ are not identical, so that it is not possible to find two 
frames S, S’ in which equation (5.5) would be satisfied, observations o = O(S)  and 
0‘ = O’(S) belong to different equivalence classes. Observations of different non- 
identical objects belong to different equivalence classes. 

An object has been defined as an ensemble of events Ei with observed coordinates 
774 having an identity 9. Different objects O1 and O2 are represented by different 
ensembles of coordinates q?( 1 )  and 774(2), respectively, which can be transformed 

a‘ and A = A i  = A ‘  = A. 
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according to equations (5.6) and (5.7) into ~ : ~ ( 1 )  and ~ : ~ ( 2 ) ,  respectively. It is evident 
that the set {q:(l), ~ : ~ ( l ) ,  . . .} is isomorphic to the set {77f(2), ~ : ~ ( 2 ) ,  . . .}, i.e. their 
elements are in one-to-one correspondence. For instance, identical crystals, translated 
in all possible ways, are in one-to-one correspondence with identical stones, also 
translated in all possible ways. Translations, Lorentz transformations, dilatations, etc, 
can be applied to all phenomena including all objects such as planets, stars, crystals, etc. 
All these objects have the same covariance group, in our case IS0(4,2). 

(b) Isomorphism between the set of  frames and any equivalence class of observations. 
This requirement means that reference frames are in one-to-one correspondence with 
the observations of an equivalence class. This is true, as follows from requirement (a) 
only if reference frames are identical objects. If these identical objects are free, i.e. move 
freely translationally, dilatationally, etc, so that the metric is given by equation (3.2), 
then we say that the reference frames are inertial. 

(c) Law of motion. In the present paper we restrict ourselves to the fiat space V6, 
even though an extension to a curved VS has been already initiated in PavSiC (1977). 

A free object moves from a point q? to a point 77; so that the path is extremal: 

S jvy d u  = 0. (5.40) 

The differential equation, following the variational principle from (5.40), is 

d2qa/du2 = 0. (5.41) 

If the object is not free, then we can assume that it is under the influence of a 6-force 
f a ,  so that the law of motion is 

drra/du = f a .  (5.42) 

The quantity ra = moo dqa /du  is the 6-momentum, moo being the invariant mass 
(Barut and Haugen 1972) with respect to IS0(4,2) .  The momentum ra of an isolated 
object is a constant of motion. If free particles collide, their total momentum r ra  is 
conserved. If initially a particle O1 has the dilatational momentum & = O  and 
collides with another particle O2 having .rr:#O, then after the collision O1 has 
T’: # 0, i.e. it starts moving dilatationally. 

In terms of the coordinates xa (see equation (3.5)) the law of motion (5.42) reads: 

ds’= (dx“ dxa)”2 (5.43) 

where pa = KmOO dx”/df(see also equation (5.28)). If we insert into equation (5.43) the 
expressions : 

p’” = m$ dx’”/ds 

ds = (dx’” dx,J1” 

m t  = KmOO ds/df F’” = Pp ds’/ds 

and if we restrict ourselves only to the first four components of equation (5.43), then we 
obtain 

dpc”/ds = Fc” (5.44) 

which is the usual law of motion, but with the effective mass mg which can be written also 
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assmg = ( ~ ” p r ) ” * ,  
7 and 7 being constant, we have 

In the case of free motion, i.e. for f ”  f 0, f 5  =f“ = 0 and therefore 

m: = K(O)(m&, + T 5 T 6 ( ~ ) ) 1 / 2  (5.45) 

where ~ ~ ( 0 )  and ~ ( 0 )  are the values of r 6  and K taken at x” = 0, respectively. The 
effective mass m$ is a Poincark-invariant. It is also a constant of motion, provided that 
f 5  =f“ = 0. When studying translational motion of the centre of mass of a particle, we 
cannot distinguish between the case 77’ = 0 and 17’ f 0, except for the differences in the 
effective masses. The influence of non-zero dilatational momentum 7rS # 0 is thus 
hidden. This is a reason why we have not observed dilatational motions of subnuclear 
particles, even if such motions indeed exist. 

6. Some further physical implications 

6.1. Anomalous red shifts of galaxies. In the last few years pairs of galaxies have been 
observed connected by a ‘bridge’ and which have red shifts different up to a factor of 2 
(Arp 1970). This has been a cause of the controversy (Field et a1 1973) whether the two 
galaxies in a pair are both at the same distance from us, or not. If they are, then their red 
shifts are anomalous, not obeying Hubble’s law. The differences in red shifts are too 
great to be caused either by relative motions or by gravitational fields. Here I propose 
an explanation: the galaxies in a pair have different scales, and therefore, according to 
equation (1.3) or (lS), different red shifts. The blue shifts are masked by the overall 
expansion of the universe. 

6.2. Large ‘velocity’ dispersion in clusters of galaxies. The very large ‘velocity’ 
dispersion in clusters of galaxies has been a major puzzle in astronomy for many years 
(Clube 1978). The galaxies in many clusters seem to have such large random velo- 
cities-observed as random lineshifts-that the clusters can only remain gravitationally 
bound if some ‘extra’ mass, over and above that in the visible stars is present. Such 
‘missing’ mass has not been observed. The scale degree of freedom suggests an 
explanation: galaxies in clusters have large random scales and therefore large random 
red shifts (blue shifts being masked by the overall expansion of the universe). Never- 
theless they remain gravitationally bound, obeying the dynamics given by equation 
(5.42). 

6.3. Large transverse momentum phenomena. This is now a large branch of the physics 
of subnuclear particles. For instance, p pairs produced in hadronic collisions have large 
transverse momenta p r  with respect to incident beams. Harada et a1 (1978) realised 
that even if all known effects are included in the calculations, there still remains 
unexplained a great portion of the transverse momentum. It was named ‘primordial 
transverse momentum of partons’. 

From the relativity in v6 it follows that each translationally and dilatationally 
moving object has necessarily a transverse momentum with respect to the direction of 
its translational motion. This comes intuitively from the fact the object is expanding or 
contracting. Formally this follows from equation (5.28). Let Wi be the world lines 
representing the object (see 0 5 ) ,  and let x i  be the coordinates of an event Ei, taken at 
the time t, on a world line Wi. Each world line Wi belonging to the object 0 has the 
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momentum p i  (see equation (5.28)): 

p j = K ( T r  - X j 7 r 5 )  ( r  = 1 ,2 ,3 )  
where we have assumed that all world lines Wr: have the same 4, 7-r’ and K .  Let us 
choose a reference frame such that 

T r  = (0 ,  0,  T3).  

Then: 

(6.1) 

From equation (6.1) it is obvious that p ;  has the transverse components - K X ! T ’  and 
- K X ~  7~ . The world line characterised by X; = 0 has zero transverse momentum in the 
chosen reference frame. 

If partons, and in some cases also hadrons, do move dilatationally, then they have 
necessarily ‘primordial’ transverse momenta given by equation (6.1). 

1 5  2 5  3 3 5  pj=K(-XjT , -X i77  ,T - X j T  ). 

2 5  

6.4. Electronlmuon mass ratio. Equation (5.45) can explain why the electron and 
muon have different observed masses. Let us assign to the electron e : 

(6.2) 5 
T e  = o  

and to the muon p : 

T5 ,ZO 

and let both e and p have T: = T; # 0. In a previous paper (PaviiE 1977), T‘ has been 
given the physical interpretation of electric charge. Equations (5.45) and (6.2) give for 
the observed p / e  mass ratio the following expression: 

The numerical value of this ratio is in agreement with the measured value if 7r5, ~ ‘ ( 0 )  
and moo are quantised so that 

r 5 T 6 / m i o  = ($x 137)’. (6.4) 
So we have reduced the problem of the p / e  mass ratio to the problem of calculating 
(6.4) (see, for instance, Barut 1978). However, now we have some understanding of the 
nature of the difference between electron and muon. The electron and muon are 
supposed to be identical objects with different dilatational momenta T: and IT:. Lepton 
number conservation is then nothing but conservation of the electron and muon dilata - 
tional momenta IT: and T:, respectively. The electron neutrino Y ,  must then have 
re = 0, whilst the muon neutrino Y,, must have T; # 0. 

The idea that the states associated with e and p have the same ‘conformally 
invariant mass’ moo but different rest masses when observed in the Minkowski space has 
been put forward by Barut and Haugen (1973). Their main idea is essentially the same 
as the present one. The difference is in the fact that they use the five-dimensional 
hypercone V5, defined by qaqa = 0, embedded in the space v 6 ,  and not the whole space 
v6 as we use it. Different observed electron and muon masses come in their theory from 
the coupling between spin and the curvature of the space V5. The expectation value of 
this coupling is zero for the electron, but different from zero for the muon. On the 
contrary, in the present theory I can describe the observed e - CL mass difference even 

5 
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without referring to spin. The electron and muon are identical particles, following 
different trajectories in v6. When projected into the Minkowski space M4 their 
trajectories appear to have different effective masses. 

7. Conclusion 

In the present paper I have introduced the special relativity in the six-dimensional space 
V,. The theory is based on the principle of relativity which is extended so that it 
incorporates also the dilatational degree of freedom-scale. There are several already 
existing theories dealing with scale, but they (i) either do not interpret the scale as the 
dilatational degree of freedom; or (ii) are not based on the principle of relativity. It is 
just (i) and (ii) that I have assumed. So scale is treated on the same footing as the 
position or orientation of an object. Though the theory appears to be speculative at this 
stage, it is no less speculative to claim that scales of identical objects, such as hydrogen 
atoms, are always the same and constant over all the universe. 
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